## The Intersection of Computer **Science and Biology Bioinformatics & the Next Software Revolution**

(Sara-Jane Dunn's "The next software revolution: programming biological cells")

**Jackson Eshbaugh** 



## The next software revolution

## The Next Software Revolution From Silicon to Biology

- The original technological revolution
  - medium)
- The next technological revolution

  - A living technological revolution

On silicon, created so many new possibilities (including this presentation)

#### • Biological, will create so many new possibilities we can't even dream of.

## This is a challenge.



# The Program Running in a Cell



## The Next Software Revolution Stem Cells

- Stem cells
  - Grow into other types of cells.
  - - "Returned to the *naïve state*"
- Changing cell fate is still a process of trial and error.

#### Normal cells can be "reprogrammed"—that is, turned back into stem cells

Ironically, *learning how this program runs* – which is a very tough question – starts with asking a very *simple question*: What does this system actually

es this system actually have to do?



Since structure dictates function, we can use function to begin to envision structure.

## The Next Software Revolution A General Idea of how to Deobfuscate the Program

**Observations** 

When gene A is active, either gene B or C is active



Mathematical Logic Language

 $A \Rightarrow B \lor C$ "If A, then B or C"



#### Input Into a Program



## The Next Software Revolution Sara-Jane Dunn's Experiment

- 1. Starts with nearly 50 specifications generated from experimental observations.
- 2. Encodes these observations in the tool
- 3. The computer spits out a biological program (of gene interactions).
- 4. Predictions are generated by the program (testing in silico)
- 5. These predictions are tested in the lab.

## The Experiment



# reprogramming"

- which stem cells operate.
- predict different methods to achieve different goals under the general lab.

"A common molecular logic determines embryonic stem cell self-renewal and

By Sara-Jane Dunn, Meng Amy Li, Elena Carbognin, Austin Smith & Graziano Martello

• **Purpose:** To determine if a computer algorithm can predict the mechanism by

 A cABN was created, fed the constraints that we talked about earlier, asked to umbrella of inducing naïve pluripotency, then these results are tested in the





### cABN predictions supported by experiment

### reprogramming" By Sara-Jane Dunn, Meng Amy Li, Elena Carbognin, Austin Smith & Graziano Martello

#### Testing combinations of factors that could enhance stem cell resetting

| Α |          | Prediction |                     |                     |                           |                             |  |
|---|----------|------------|---------------------|---------------------|---------------------------|-----------------------------|--|
|   | Factor 1 | Factor 2   | Factor 1<br># steps | Factor 2<br># steps | Factors<br>1+2<br># steps | Syner-<br>gistic<br>effect? |  |
|   | Esrrb    | Klf2       | 5                   | 6                   | 4                         | Y                           |  |
|   | Esrrb    | Klf4       | 5                   | 6                   | 4                         | Y                           |  |
|   | Esrrb    | Tbx3       | 5                   | 7                   | 3                         | Y                           |  |
|   | Klf4     | Tbx3       | 6                   | 7                   | 4                         | Y                           |  |
| 1 | Klf2     | Tbx3       | 6                   | 7                   | 4                         | Y                           |  |
|   | Klf2     | Klf4       | 6                   | 6                   | 5                         | Y*                          |  |
|   | Esrrb    | Tfcp2l1    | 5                   | 6                   | 5                         | N                           |  |

"A common molecular logic determines embryonic stem cell self-renewal and

|          |          | Exper                       | iment                       |                                   |                             |                  |
|----------|----------|-----------------------------|-----------------------------|-----------------------------------|-----------------------------|------------------|
| Factor 1 | Factor 2 | Factor 1<br>Fold<br>Over WT | Factor 2<br>Fold<br>Over WT | Factors<br>1+2<br>Fold over<br>WT | Syner-<br>gistic<br>effect? |                  |
| Esrrb    | Klf2     | 11                          | 13                          | 49                                | Y                           | 1                |
| Esrrb    | Klf4     | 11                          | 12                          | 42                                | Y                           | $1 \square^{4x}$ |
| Esrrb    | Tbx3     | 11                          | 4                           | 29                                | Y                           |                  |
| Klf4     | Tbx3     | 12                          | 4                           | 26                                | Y                           |                  |
| Klf2     | Tbx3     | 13                          | 4                           | 25                                | Y                           | 50%              |
| Klf2     | Klf4     | 13                          | 12                          | 16                                | N*                          | - 50x            |
| Esrrb    | Tfcp2l1  | 11                          | 2                           | 10                                | Ν                           | ]                |



# reprogramming"

- This research is exactly what Sara-Jane described in her TED Talk.
- Real World Applications

"A common molecular logic determines embryonic stem cell self-renewal and

By Sara-Jane Dunn, Meng Amy Li, Elena Carbognin, Austin Smith & Graziano Martello

 Using a network like this to inform how to reset a sample of cells and then differentiate them to grow implants that the body is less likely to reject.



## The Next Software Revolution In Closing...

- This is just one building block. More testing is needed (on all scales—from genetics to the flow of information between cells)
- We need to build new tools in order to fully realize this new revolution
  - We need new programming languages that compile not to machine code, but instead to genetic code (DNA & biochemistry)
- We need to bring together all types of scientists, and they need a common language in order to communicate effectively in the field.

## The Intersection of Computer **Science and Biology Bioinformatics & the Next Software Revolution**

(Sara-Jane Dunn's "The next software revolution: programming biological cells")

**Jackson Eshbaugh** 

