
Network Dilemma
A Survey of 6 Different Network Configurations

MATH 182, Dr. Manami Roy

Jackson Eshbaugh, Amy Fabara, Tyler Salmon, Billy Zou

May 3, 2024

Abstract

This study surveys six different network configurations—complete, complete bipartite, hypercubes, trees,
cyclic, and wheel—to evaluate their suitability for a network of 32 nodes. Through comprehensive analysis
of each configuration’s cost, speed, reliabilty, and extensibility, we explore the pros and cons of each layout.
Our evaluation criteria include network connectivity, vertex and edge reliability, the existence of Hamilton
cycles and Euler tours, and the feasibility of network expansion. Among the configurations considered,
the complete bipartite, the hypercube, and the wheel layouts emerged as the most suitable, depending on
specific needs. To conclude, we provide recommendations tailored to different organizational requirements,
providing a nuanced understanding of how each configuration could serve specific network infrastructure
needs effectively.

1 Introduction

Networks are at the basis of some of the most simple and important things we do on our devices, daily. The
internet, other intranets, and even local networks play a very significant role in computing. In fact, setting up
a computer network is no simple task! Networks are complex, and every setup has its pros and cons. Here,
we consider setting up a network with 32 computers in six different configurations. We begin with a discussion
of graphs in general, then hypercubes and their properties. After this, we lay out our criteria with which we
will judge each network setup. Then, we evaluate each using the criteria we discussed. Finally, we make a
judgement call to declare the best network configurations out of the six we discuss here.

1.1 What is a Graph?

Before we begin our discussion of these different network layouts, it would behove us to define exactly what a
graph is.

Definition 1.1 (graph). A graph G = (V,E) consists of a set of vertices (or nodes or points) and a set of edges
which serve as connections between the vertices.

Each of the network configurations we explore below are a type of graph, and each have different advantages
and disadvantages when implemented as network configurations. Now, before we begin our analysis, a word on
hypercubes is due.

1.2 On Hypercubes

Hypercubes or n-cubes, symbolized by Qn, where n represents the dimension of the cube, are one example of a
possible network configuration. There are some interesting properties that n-cubes have that we explore here.

Firstly, we’ll introduce an interesting connection between hypercubes and binary strings. The n-cube Qn

corresponds with a binary string of length n, such that each vertex represents a possible string.
In Figure 1, notice that all possible combinations of a binary string of length n are encoded into the

hypercube. This idea allows us to derive some general information about Qn.

Theorem 1.1. In any hypercube Qn, the number of vertices is equal to the number of possible binary strings
of length n, which is 2n.

Definition 1.2 (Degree of a vertex). The degree of a vertex v, denoted deg(v), is a measure of the number of
connections to the vertex. For example, in Figure 2, deg(a) = 1, but deg(b) = 2.

1



(a) Q1 (b) Q2

(c) Q3

Figure 1: N-cubes for 1 ≤ n ≤ 3

a b c

Figure 2: In the above graph, deg(a) = deg(c) = 1, but deg(b) = 2.

Theorem 1.2. For any hypercube Qn, the number of edges is

n2n−1

[1]

Proof. Notice that the degree of each vertex in an n-cube is equal to n. If we count each vertex’s degree, we
have

e = n · 2n.

However, simply using this quantity as the number of edges is incorrect—we’ve counted each edge twice. The
correct number of edges is

e =
n · 2n

2
= n2n−1

In terms of Hamilton cycles, we can find them in n-cubes, but there’s a special kind of binary we use to
derive them called Gray code.

Definition 1.3 (Gray code). Gray code is a way to write binary strings (of length 2n) in a cyclical format,
such that each string only differs from the next by 1 digit. [8]

Using Gray code, we can construct a Hamilton cycle (see Definition 1.4):

1. Start with a 1-bit Gray code sequence:
0, 1

2. Until length n (the dimension of the hypercube) is reached:

(a) Reflect the previous sequence, i.e.
0, 1, 1, 0

2



(b) Prepend the original sequence with 0, and the reflected sequence with 1, e.g.

00, 01, 11, 10

3. Each string in the sequence is mapped to a specific vertex, such that all vertices immediately next to one
another differ by exactly one digit. The created sequence of strings is the Hamilton cycle.

We also find that Euler tours are present in hypercubes, because all of their vertices are of even degree.

Theorem 1.3. For every even n, Qn has an Euler tour (See Definition 1.6) because for every even n, all
vertices in Qn are of even degree. By Theorem 1.5, all even n-cubes have an Euler tour.

Finally, another interesting thing about hypercubes is the simplicity of their diameters.

Theorem 1.4. The diameter of a hypercube Qn is n [3].

In fact, if we take two points labeled using Gray code, we can find the distance between these points by
simply counting the number of different digits in the binary strings—that number is the distance. Theorem 1.4
is trivially proven when we think about the possibilities of the vertex labeling. The two furthest points from
each other will be labelled by n zeros and n ones. The number of different digits is, of course, n.

1.3 Design Considerations

Before we begin evaluating the possible setups, we need to list the criteria we will use to judge these configura-
tions. Each prospective network setup will be evaluated using the following criteria:

• Cost — Network connections are expensive. We try to optimize the number of edges as best possible.

• Speed — We measure speed in network diameter, which is the furthest apart two vertices can be.

• Edge Reliability — We determine edge reliability by considering the scenario where one edge (connection)
stops functioning. In this scenario, we find how many vertices are still accessible.

• Vertex Reliability — We determine vertex reliability by considering the scenario where one vertex (com-
puter) stops functioning. In this scenario, we find how many vertices are still accessible.

• Hamilton Cycles — We check for a Hamilton cycle. This allows the client to send a message exactly once
to every computer on the network.

Definition 1.4 (Hamilton cycle). A cycle that uses every vertex in a graph exactly once is called a
Hamilton cycle [2].

• Euler tours — We check if the network is Eulerian or not. An Euler tour would allow a message to be
sent through every connection once.

Definition 1.5 (Euler trail). An Euler trail is a trail in which every pair of adjacent vertices appear
consecutively. That is, every edge is used exactly once [5].

Definition 1.6 (Euler tour). An Euler tour is a closed Euler trail [5].

Definition 1.7 (closed trail). A trail is closed if it begins and ends with the same vertex [5].

Theorem 1.5. A connected graph (or multigraph, with or without loops) has an Euler tour if and only if
every vertex in the graph has even degree [5].

• Extensibility —We determine what it would require to add another 32 computers to this network structure.

2 Potential Configurations

2.1 Complete Graph K32

Definition 2.1 (Complete graph). A complete graph (denoted as Kn, where n is the number of vertices in the
graph) is a graph in which every vertex is connected to every other vertex.

Because of its structure, K32 is very reliable but very expensive.

3



Figure 3: The complete graph K32

2.1.1 Network Connections

Speaking of cost, we calculate the number of edges in complete graphs using a combination.

Theorem 2.1. The number of edges in a complete graph Kn is(
n

2

)
[4].

By Theorem 2.1, the graph Kn=32 has (
32

2

)
= 496

edges.

2.1.2 Diameter

With all those edges, every point is connected to every other point, so, the graph K32 has a diameter of 1.

2.1.3 Edge Reliability

Suppose one connection were to be broken. Even so, since every computer is connected to every other
computer, all computers would be completely connected.

2.1.4 Vertex Reliability

Suppose one computer were to go down for maintenance. Still, all of the other 31 computers would remain
completely connected to the network, because they are all connected to each other directly.

2.1.5 Hamilton Cycles

Theorem 2.2. A complete graph Kn always has at least one Hamilton cycle [6].

Since all complete graphs have at least one Hamilton cycle, the graph we’re considering has a Hamilton cycle.

2.1.6 Euler Tours

Consider Theorem 1.5. For a complete graph Kn, an important corollary arises.

Corollary 2.2.1. Let Kn be a complete graph with n ≥ 3 vertices. Then, if n is even, Kn does not have an
Euler tour, but if n is odd, Kn does have an Euler tour.

Proof. Consider the graph Kn. Note that in a complete graph, each vertex has degree n− 1, since each vertex
is connected to every other vertex except itself. Proceed by cases.

Case 1: n is even. Since the degree of each vertex in Kn is n− 1 and n is even, the degree of each vertex in
Kn is odd. By Theorem 1.5, Kn does not have an Euler tour.

4



(a) K31,1 (b) K30,2

(c) K16,16

Figure 4: Different bipartite configurations for m+ n = 32

Case 2: n is odd. Since the degree of each vertex in Kn is n− 1 and n is odd, the degree of each vertex in
Kn is even. By Theorem 1.5, Kn has an Euler tour.

Hence, for n ≥ 3, Kn has an Euler tour only when n is even.

Applying this corollary, we find that K32 does not have an Euler tour.

2.1.7 Extensibility

To add another 32 nodes to the network, we simply construct K64. By Theorem 2.1, the number of edges in
the complete graph K64 is (

64

2

)
= 2, 016.

So, this would require an extra 2, 016− 496 = 1, 520 connections.
In a word, K32 is ... expensive. Yet, it has great reliability. Perhaps another layout will be more
cost-optimized and share in similar reliability statistics.

2.2 Complete Bipartite Graphs Km,n where m+ n = 32

Recall from Definition 1.1 that a graph G has a set of vertices V . If we consider the complete graph Kn’s set
of vertices V , we can group the vertices into two subsets, A ⊂ V and B ⊂ V , where A ∪B = V . This is the
basic idea behind the complete bipartite graph.

Definition 2.2 (Complete bipartite graph). A complete bipartite graph is a complete graph that is
partitioned into two sets of vertices. Each vertex from each set must is connected to each vertex from the
other set. A complete bipartite graph is denoted Km,n, where m and n are the sizes of the two sets of vertices.

For our cases, we’ll consider m+ n = 32. There are three different bipartite graphs we’ll look at in this
section: K31,1, K30,2, and K16, 16. K31,1 and K30,2 are master-slave network setups. K31,1 has one master,
and K30,2 has two masters (one acts as a backup).

5



2.2.1 Network Connections

Theorem 2.3. For a bipartite graph Km,n, the number of edges in K is

m · n

since each vertex in each subset will need to be connected to every vertex in the other subset.

Using the above theorem, K31,1 has 31 edges, K30,2 has 60 edges, and K16,16 has 256 edges.

2.2.2 Diameter

Because of the properties of complete bipartite graphs, the diameter of any complete bipartite graph is 2.
Hence, K31,1, K30,2, K16,16 all have a diameter of 2.

2.2.3 Edge Reliability

If an edge were to be removed from K31,1, the only computer knocked offline would be the one connected to
the downed edge in the set of 32. This results in all 31 other machines remaining online. As for K30,2, the
master has a backup. This means that in the event that connection to the master is knocked offline, the
secondary master will take over, allowing connection to all 32 computers on the network to persist. This may
result in slightly less efficient speeds than when the network is fully operational. In K16,16, similarly, if one
connection were to go offline, all computers can remain connected to the network. Any computers that relied
on the dead connection can simply re-route through another computer in the opposite set.

2.2.4 Vertex Reliability

If a computer was to malfunction or go offline in a network configured like K31,1, there are two possibilities:

• If any of the slave machines go offline, only that computer will be affected.

• If the master goes offline, the whole network is effectively offline.

Because there are two outcomes, we use worst-case analysis. When doing such analysis, only the worst
possible outcome is considered, and all decisions are made with these metrics in mind. So for K31,1 the worst
case computer outage is a whole network outage. When considering K30,2, we loose this vulnerability. If the
master goes offline, only it is knocked offline. This means that any computer in a K30,2 configuration that
goes offline will be the only machine affected. A K16,16 layout shares this same property—if a machine goes
down, other machines can access any machine on the network besides the one which fell offline.

2.2.5 Hamilton Cycles

Theorem 2.4. A bipartite graph has a Hamilton cycle if and only if m = n ∀ m,n ≥ 2.

Proof. Because this is a bi-conditional, we need to prove both directions of the statement.
=⇒ First, suppose Km,n has a Hamilton cycle. This means that m = n because traversal of the graph must
occur between partitions. Additionally, a cycle implies that the same edge is never used twice. Thus the
trivial case of K1,1 does not have a Hamilton cycle.
So, we have m = n ∀ m,n ≥ 2
Next, we focus on the other side of the conditional.
=⇒ Consider the graph Km,n, where m = n and m,n ≥ 2. If we label each of its vertices based on which set it
comes from (denoted here as either M or N), we have

M1, N1,M2, N2,M3, N3, ...,Mn, Nn,M1

which is a Hamilton cycle.
Hence, a bipartite graph has a Hamilton cycle ⇐⇒ m = n ∀ m,n ≥ 2.

Using Theorem 2.4, K31,1 and K30,2 do not have Hamilton cycles (since m ̸= n), but K16,16 does have such a
cycle.

6



Figure 5: The hypercube Q5

2.2.6 Euler Tours

We apply Theorem 1.5 to determine the existence of Euler tours.
For K31,1, clearly the degree of every vertex that isn’t the master is 1. This immediately shows that it does
not have an Euler tour. As for K30,2, every vertex is of even degree. All the slave vertices have a degree of
2—one connection to each master. The masters are connected to 30 separate computers (but not each other),
so they have degree of 30 each. Thus, K30,2 has an Euler tour. Finally, K16,16 clearly has an Euler tour
because the degree of each vertex is 16.

2.2.7 Extensibility

To double the network in a K31,1 configuration, only one additional connection is needed per computer—from
the new slave to the master, totaling 32 extra connections. In the case of the K30,2 network, a connection
needs to be made to both master computers from each new slave, totalling 64 additional connections. Finally,
for a K16,16 layout, we have

(16 + 16) · (16 + 16) = 1, 024

which is 1, 024− 256 = 768 new connections. So, a complete bipartite layout presents a healthy competitor to
K32 in K30,2, although the other two are either quite unreliable (K31,1) or quite expensive (K16,16).

2.3 5-Dimensional Hypercube Q5

We discussed hypercubes at length in Section 1.2, but we now consider Q5 specifically.

2.3.1 Network Connections

Applying Theorem 1.2, Q5 has 5 · 24 = 5 · 16 = 80 edges.

2.3.2 Diameter

Applying Theorem 1.4, Q5 has a diameter of 5.

2.3.3 Edge Reliability

If a connection is down in this configuration, messages could still traverse the whole network since one node is
connected to other five adjacent nodes. The messages would be rerouted to other edges when one of the edges
is down, reaching their destination (even if slower than without a broken connection).

2.3.4 Vertex Reliability

If a computer falls offline from a Q5 network configuration, it will be the only machine impacted, because
there are multiple paths to the same destination that don’t utilize all the same nodes.

7



2.3.5 Hamilton Cycles

Using Gray code (see Definition 1.3), we construct a string to traverse through the hypercube Q5:
n = 1

0, 1

n = 2
00, 01, 11, 10

n = 3
000, 001, 011, 010, 101, 111, 110, 100

n = 4
0000, 0001, 0011, 0010, 0101, 0111, 0110, 0100, 1001, 1011, 1111, 1101, 1010, 1110, 1100, 1000

n = 5

00000, 00001, 00011, 00010, 00101, 00111, 00110, 00100, 01001, 01011, 01111, 01101, 01010, 01110, 01100, 01000,

10001, 10011, 10111, 10101, 11011, 11111, 11101, 11001, 10010, 10110, 11110, 11010, 10100, 11100, 11000, 10000

Since each binary string only differs by one digit, when mapped onto an n-cube where all vertices immediately
next to one another differ by exactly one digit this list of binary strings represents a Hamilton cycle through
the hypercube Q5.

2.3.6 Euler Tours

According to Theorem 1.3, Qn has an Euler tour when n is even. Since n = 5, Qn doesn’t have an Euler tour.

2.3.7 Extensibility

To keep the same structure while expanding the network, a second Q5 unit is constructed and this and the
original are connected to each other. Another Q5 is 80 connections and it takes 32 to connect the two
networks together. So, it takes a total of 80 + 32 = 112 connections to double this network’s capacity.
Hypercubes make very efficient and reliable networks, but the cost to implement one may not always be worth
it, depending on use cases.

2.4 Tree Configuration

Definition 2.3 (Tree). A tree is a connected, simple graph where each node is connected to only one parent
node; the only node without a parent is the root node (the node on the layer with only itself). Leaf nodes are
nodes with no children. There is only one path to each node in a tree layout.

We consider 2- (binary), 3- (ternary), and 4-degree tree configurations below.

2.4.1 Network Connections

Theorem 2.5. A tree with n vertices has n− 1 edges [7].

Applying this theorem, all three trees we consider will have 32− 1 = 31 edges.

2.4.2 Diameter

The diameter of a tree is equal to the height of that tree (since the height of the tree gives the number of steps
it takes to get from the root node to the furthest leaf node.

Theorem 2.6. The height h of a d-ary tree (tree of degree d) is h = ⌊logd(n)⌉.

Proof. Each level of a d-ary tree contributes dk nodes (where k starts at 0 and ends at h). This implies

n =

h∑
k=0

dk = 1 + d+ d2 + ...+ dh.

Using the closed form of a geometric sum, we have

n =
dh+1 − 1

d− 1

8



(a) Binary (2-degree) tree (b) Ternary (3-degree) tree

(c) 4-degree tree

Figure 6: Different tree configurations with n = 32

=⇒ dh+1 = n(d− 1) + 1

Now, taking the logarithm of both sides, we have

h+ 1 = logd(n(d− 1) + 1) =⇒ h = logd(n(d− 1) + 1)− 1

We can simplify the logarithm as follows
h ≈ logd(n)

Since the height must be an integer, we round the right side to the nearest integer.

h = ⌊logd(n)⌉

Hence, the height h of a d-ary tree (tree of degree d) is h = ⌊logd(n)⌉.

Applying Theorem 2.6, we have h = log2(32) = 5 for a binary tree, h = ⌊log3(32)⌉ = 3 for a ternary tree,
h = ⌊log4(32)⌉ = 3 for a 4-degree tree.

2.4.3 Edge Reliability

For any tree, the worst case of an edge failure is when an edge connected to the root fails. This partitions the
tree into two: a root-connected unit and a separate cluster. Those machines we count as ”online” in this
instance are the root-connected ones. For a binary tree, notice only 16 nodes (half of the original number)
would be accessible after such an event. As for a ternary tree, the worst case will be one of the edges
connected to the larger number of nodes. This would leave 19 nodes accessible. Finally, a 4-degree tree will
have only 16 nodes operational after the removal of its most vital edge.

2.4.4 Vertex Reliability

When using worst-case analysis for a computer failure in these tree configurations, we always assume the root
fails—no computer could impact the network more than the root if it were to fail. Notice that the network is
partitioned when the root fails. Each section is able to communicate freely internally, but any traffic outbound
from these clusters cannot achieve its destination because the root is offline. To measure the impact of a
(root) computer failing, we count the number of nodes in the smallest cluster that would be created by this
failure. The binary tree layout would see the network separated into two partitions, the smaller of which has
15 computers. The ternary tree layout would see the network separated into three partitions, the smallest of
which has 5 computers. The 4-degree tree layout would see the network separated into four partitions, the
smallest of which has 5 computers.

9



2.4.5 Hamilton Cycles

Trees do not have Hamilton cycles since tree graphs don’t have any cycles; there is no way to return to the
root node of a tree while touching every node in the tree without re-using edges of the tree.

2.4.6 Euler Tours

Similarly, by Theorem 1.5, trees do not have Euler tours because any leaves of a tree are of degree 1.

2.4.7 Extensibility

To expand will always require 32 more edges, because of the definition of a tree graph—it takes only one extra
connection per node, always.
Although relatively cheap, tree graphs do not enjoy either a Hamilton cycle or an Euler tour, which could be a
major downside when considering possible network configurations.

2.5 Cyclic Configuration C32

Definition 2.4 (Cyclic graph). A cyclic graph (denoted Cn) is a graph where every vertex has a degree of 2.
They are connected in a cycle, as the term suggests.

Figure 7: The graph C32

2.5.1 Network Connections

Theorem 2.7. The number of edges in a cyclic graph Cn is equal to n, because each node needs to link to the
next node, and the last node links back to the first node.

Using Theorem 2.7, the graph C32 has 32 edges.

2.5.2 Diameter

Theorem 2.8. Due to the nature of circles, any length further than halfway around a circle can be traversed
quicker in the opposite direction. Hence, the diameter of a cyclic graph Cn is equal to n

2 .

Applying Theorem 2.8, C32 has a diameter of 32
2 = 16.

2.5.3 Edge Reliability

Consider the case of a non-functional connection in a cyclic network. In this case, all computers are still
accessible because the opposite direction can be traversed, and all n nodes are accessible. For C32, all 32 nodes
are accessible.

2.5.4 Vertex Reliability

In the case of a computer failure, other computers are still accessible because the opposite direction of the
network can be traversed if need be.

10



2.5.5 Hamilton Cycles

Theorem 2.9. Any cyclic graph Cn will have a Hamilton cycle because all of its vertices are degree 2 [2].

This can be seen from the definition of a Hamilton cycle (see Definition 1.4)—a cycle using every vertex can
be easily formed by most any cyclic graph. Hence, C32 has a Hamilton cycle.

2.5.6 Euler Tours

Every cyclic graph has only vertices of degree 2. Hence, by Theorem 1.5, our configuration C32 has an Euler
tour.

2.5.7 Extensibility

To expand another 32 machines, 2 connections would need to be broken, then the next 32 machines could be
inserted. This gives n = 64 for an upgraded network C64, which requires 64− 32 = 32 new connections to be
formed.
The reliability of the cyclic graph is excellent, and its cost is great too. It’s just its speed that makes it less of
a contender among the options. Perhaps we can change the layout of the cyclic graph to lower its diameter,
while only minimally impacting its cost.

2.6 Wheel Configuration W32

The answer to the previous ”perhaps” statement is the wheel graph (Wn).

Figure 8: The wheel graph W32

Definition 2.5. A wheel graph, denoted Wn is a cyclic graph with one point in the center that is connected
to all other points on the graph. That is, n− 1 points form the cyclic part, and the remaining point is
connected to all others.

When processing this configuration, we can consider a cyclic configuration C31 and simply add the central
node after this.

2.6.1 Network Connections

According to Theorem 2.7, C31 has 31 connections. The central node is connected to every other node which
yields another 31 connections, totalling 62.

Theorem 2.10. A wheel graph Wn has 2n− 2 edges.

Proof. From Theorem 2.7, we have that a cyclic graph Cn has n edges. Notice that a wheel graph Wn consists
of a cyclic graph Cn−1 and an extra central point, which is connected to every other point. So, from the cyclic
graph we have n− 1 edges, and we have an additional n− 1 edges from the central point (which is connected
to every point on the graph besides itself).

2(n− 1) = 2n− 2

11



2.6.2 Diameter

According to Theorem 2.8 the diameter of any cyclic graph is n
2 . However, the central node in the wheel

configuration cuts this diameter to 2, acting as a bypass out of the cycle and directly to the target node.

2.6.3 Edge Reliability

Notice that in the event of an edge failure, no matter which edge fails, all 32 computers remain connected to
the network, though the diameter of the network might slightly increase.

2.6.4 Vertex Reliability

Again, removing the most connected node (the central computer) only definitively disconnects the central
computer itself. In the worst case scenario of computer failure, a wheel network becomes a cyclic network.

2.6.5 Hamilton Cycles

It’s trivial to see a Hamilton cycle in a wheel configuration: simply traverse the cycle, stopping before
returning to the first node. Instead, jump to the central node, then back to the first node.

2.6.6 Euler Tours

By Theorem 1.5, there is not an Euler tour in W32, because the degree of each edge node is 3.

2.6.7 Extensibility

Using Theorem 2.10, W64 has 2 · 64− 2 = 126 edges. Comparing this with W32, W64 has 126− 62 = 64 extra
edges.
All in all, the wheel is a great option for a network. It takes the best parts of a cyclic graph and innovates on
them further, lowering diameter while keeping a great reliability.

3 Conclusion

(a) Cost to implement each network (b) Diameter of each network

(c) Reliability (both edge and vertex) of each network (d) Cost of expanding each network

Figure 9: Summary of findings

Now that we’ve discussed different potential network configurations, we make a judgement call and determine
the best configuration to implement in this scenario. Firstly, we eliminate K32 and K16,16 from our choices
because they cost far too much compared to all the other configurations (see Figure 9a). We also eliminate the

12



cyclic graph C32 because it is far too slow (Figure 9b) and the K31,1 graph because it is very unreliable in the
case of a computer failure (Figure 9c. Additionally, all the trees aren’t very reliable and they don’t contain
either a Hamilton cycle or an Euler tour.
This leaves us with K30,2, Q5, and W32. They all have identical reliability, so they are equal on that front. In
terms of Hamilton cycles and Euler tours, K30,2 has an Euler tour, W32 has a Hamilton cycle, and Q5 has
both of them. However, Q5 is slightly slower and its expansion costs more than K30,2 and W32.
Each of these setups have a valid use-case. Firstly, the K30,2 is a great setup for a master-slave configuration,
which is a great choice for the intended use (parallel processing). Each computer can quickly access another,
and even if the master goes offline, the backup master can take over.
Both Q5 and W32 are great choices for a hive mind setup. These networks are also great choices for parallel
processing. Depending upon the size of the data being processed, a Q5 may make more sense than a W32. Q5

offers 4 backup lines in case one line is congested with traffic, while W32 offers only 2. Yet, W32 is cheaper to
implement than Q5 so depending upon the client’s requirements, there is real value in making a decision
between these two. And of course, if a C2 (command and control) setup makes most sense for the kind of
processing being done, then a K30,2 makes the most sense.
In conclusion, the client should choose from either a K30,2 layout, a Q5 layout, or a W32 layout based upon
their specific needs, such as data size and control placement (which machines—if any—are in charge).

References

[1] Brown University Math Department. Counting the Edges Of Higher-Dimensional Cubes. url:
https://www.math.brown.edu/tbanchof/Beyond3d/chapter4/section05.html.

[2] David Guichard. Hamilton Cycles and Paths. url: https:
//math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Combinatorics_

and_Graph_Theory_(Guichard)/05%3A_Graph_Theory/5.03%3A_Hamilton_Cycles_and_Paths (visited
on 04/21/2024).

[3] Mark ”MJD” Dominus. Answer to ”Finding the diameter of a n-cube”. Jan. 2014. url:
https://math.stackexchange.com/a/625923 (visited on 04/27/2024).

[4] Joy Morris. Deletion, Complete Graphs, and the Handshaking Lemma. url:
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/

Combinatorics_(Morris)/03%3A_Graph_Theory/11%3A_Basics_of_Graph_Theory/11.03%3A_

Deletion_Complete_Graphs_and_the_Handshaking_Lemma (visited on 04/21/2024).

[5] Joy Morris. Euler Tours and Trails. url: https:
//math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Combinatorics_

(Morris)/03%3A_Graph_Theory/13%3A_Euler_and_Hamilton/13.01%3A_Euler_Tours_and_Trails

(visited on 04/21/2024).

[6] OpenStax. Hamilton Cycles. url:
https://math.libretexts.org/Bookshelves/Applied_Mathematics/Contemporary_Mathematics_

(OpenStax)/12%3A_Graph_Theory/12.08%3A_Hamilton_Cycles (visited on 04/21/2024).

[7] Some Basic Theorems on Trees. en-US. Section: Advanced Data Structure. Nov. 2018. url:
https://www.geeksforgeeks.org/some-theorems-on-trees/ (visited on 04/27/2024).

[8] Wolfram. Gray Code. 2024. url: https://mathworld.wolfram.com/GrayCode.html.

All figures were generated using the NetworkX and MatPlotLib packages for Python, the R statistical analysis
language, or the Tikz LATEX package.

13

https://www.math.brown.edu/tbanchof/Beyond3d/chapter4/section05.html
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Combinatorics_and_Graph_Theory_(Guichard)/05%3A_Graph_Theory/5.03%3A_Hamilton_Cycles_and_Paths
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Combinatorics_and_Graph_Theory_(Guichard)/05%3A_Graph_Theory/5.03%3A_Hamilton_Cycles_and_Paths
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Combinatorics_and_Graph_Theory_(Guichard)/05%3A_Graph_Theory/5.03%3A_Hamilton_Cycles_and_Paths
https://math.stackexchange.com/a/625923
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Combinatorics_(Morris)/03%3A_Graph_Theory/11%3A_Basics_of_Graph_Theory/11.03%3A_Deletion_Complete_Graphs_and_the_Handshaking_Lemma
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Combinatorics_(Morris)/03%3A_Graph_Theory/11%3A_Basics_of_Graph_Theory/11.03%3A_Deletion_Complete_Graphs_and_the_Handshaking_Lemma
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Combinatorics_(Morris)/03%3A_Graph_Theory/11%3A_Basics_of_Graph_Theory/11.03%3A_Deletion_Complete_Graphs_and_the_Handshaking_Lemma
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Combinatorics_(Morris)/03%3A_Graph_Theory/13%3A_Euler_and_Hamilton/13.01%3A_Euler_Tours_and_Trails
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Combinatorics_(Morris)/03%3A_Graph_Theory/13%3A_Euler_and_Hamilton/13.01%3A_Euler_Tours_and_Trails
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Combinatorics_(Morris)/03%3A_Graph_Theory/13%3A_Euler_and_Hamilton/13.01%3A_Euler_Tours_and_Trails
https://math.libretexts.org/Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/12%3A_Graph_Theory/12.08%3A_Hamilton_Cycles
https://math.libretexts.org/Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/12%3A_Graph_Theory/12.08%3A_Hamilton_Cycles
https://www.geeksforgeeks.org/some-theorems-on-trees/
https://mathworld.wolfram.com/GrayCode.html
http://networkx.org
https://matplotlib.org
https://r-project.org
https://r-project.org
https://tikz.dev

	Introduction
	What is a Graph?
	On Hypercubes
	Design Considerations

	Potential Configurations
	Complete Graph K32
	Network Connections
	Diameter
	Edge Reliability
	Vertex Reliability
	Hamilton Cycles
	Euler Tours
	Extensibility

	Complete Bipartite Graphs Km, n where m + n = 32
	Network Connections
	Diameter
	Edge Reliability
	Vertex Reliability
	Hamilton Cycles
	Euler Tours
	Extensibility

	5-Dimensional Hypercube Q5
	Network Connections
	Diameter
	Edge Reliability
	Vertex Reliability
	Hamilton Cycles
	Euler Tours
	Extensibility

	Tree Configuration
	Network Connections
	Diameter
	Edge Reliability
	Vertex Reliability
	Hamilton Cycles
	Euler Tours
	Extensibility

	Cyclic Configuration C32
	Network Connections
	Diameter
	Edge Reliability
	Vertex Reliability
	Hamilton Cycles
	Euler Tours
	Extensibility

	Wheel Configuration W32
	Network Connections
	Diameter
	Edge Reliability
	Vertex Reliability
	Hamilton Cycles
	Euler Tours
	Extensibility


	Conclusion

