
From Matrices to Models: Neural
Networks Explained

Author: Jackson Eshbaugh

Institution: Lafayette College

Course: MATH 272—Linear Algebra with Applications

Instructor: Yunied Puig de Dios

December 13, 2024

From Matrices to Models: Neural Networks Explained

Jackson Eshbaugh

December 13, 2024

Abstract

This paper investigates the mathematical foundation and application of linear al-
gebra in artificial neural networks (ANNs), a widely used model in machine learning
(ML). We begin by explaining the mathematical building blocks of ML algorithms,
highlighting how their structure relies on linear algebra. The discussion then transi-
tions from theory to practice by implementing an ANN to solve the xor problem and
running a prediction through manual calculations.

1 Introduction

Artificial intelligence (AI) has captivated the world in recent years, moving from theoretical
models to practical applications that assist us daily—like virtual chatbots answering our
questions [1]. While AI and machine learning (ML) can appear complex, they are rooted
in mathematics. Because computers operate entirely on numbers, we can peel back the
layers of AI and ML to reveal the mathematical principles that drive them. At the heart
of these principles is linear algebra, a mathematical framework that enables the algorithms
and data transformations driving AI. By understanding these fundamentals, we can better
grasp how AI systems tackle complex problems like recognizing faces, translating languages,
or predicting patterns. This study focuses on the application of the tools of linear algebra
to tackle problems central to AI.

2 Linear Algebra and Computer Science: Complimen-

tary Fields

Linear algebra has numerous uses throughout the field of computer science. Of course, one of
the most common uses is in AI and ML—the focus of this paper—but linear algebra is also
used in sectors like computer graphics, where vectors are used to build wire-frames of 3D
models [2]. Indeed, the advent of the vector as a way to store and analyze data as opposed
to other more traditional data structures has been revolutionary for computer science [3].
It is this idea that allows AI and ML to work. In fact, the computation of dot products
makes all of the advancements of AI and ML possible. In neural networks, for example, dot
products calculate the weighted sums of inputs and weights, enabling the network to predict.

1

Similarly, in recommendation systems, vectors represent user preferences and item features,
with dot products quantifying their similarity.

3 ML Basics

Before we explore the math behind ML, we must clarify what ML is and how we define an ML
model. Machine learning is ”essentially a form of applied statistics with increased emphasis
on the use of computers to statistically estimate complicated functions and a decreased
emphasis on proving confidence intervals around these functions” [4]. Essentially, we can
use computers to statistically estimate answers to complex questions that would otherwise
take an huge amount of time to compute. As can be seen in Figure 1, a machine learning
algorithm can be described by four items [4]:

• A dataset: The data that the algorithm will operate on (to start). Includes both
training data and output data.

• A model: The mathematical representation or framework used to learn patterns or
relationships from data. It is the structure that maps inputs (features) to outputs
(predictions) using a set of parameters that are optimized during the training process.

• A cost function: An error function that will quantify how far off from the true
values the predicted values are, guiding the model’s learning process. We will denote
the cost function as J(w, b), where w represents the weights from a linear model and
b represents the biases. One example of a cost function is mean square error (MSE):

J(w, b) =
1

n

n∑
i=1

(yi − (w⊤xi + b))2 (3.1)

• An optimization procedure: A procedure that finds the best set of parameters
(weights and biases) that minimize J(w, b). Training an ML model can be understood
as minimizing the cost function. Typically, a technique called gradient descent is used,
where parameters are updated in the opposite direction of ∇J(w, b), the gradient of
J .

Sometimes, we need more than just a simple prediction algorithm when using ML for
certain tasks. This is where deep learning comes in. Deep learning is an expansion of ML
where multiple layers of computation are performed. This can be modeled as a composite
function. If we define our model as f(x), and we assign it two hidden layers and an output
layer, then the whole model can be described as

f(x) = f (3)(f (2)(f (1)(x))) (3.2)

where f (1) is the first layer of the neural network, f (2) is the second, and f (3) is the output
layer [5].

A layer of a network can have any number of nodes n, and the input vector to this layer
x ∈ Rn. Hence, the transition from a layer of n nodes to a layer of m nodes can be described
as the linear transformation

2

Dataset

Model Architecture

Cost Function

Optimization (Gradient Descent)

Model Prediction

Figure 1: A machine learning algorithm makes predictions based on four objects: a dataset,
a model, a cost function, and an optimization algorithm.

x =

[
x1

x2

]
T y = Wx =

[
y1
y2

]

Figure 2: A visualization of a linear transformation T : R2 → R2 that might be used in a
machine learning algorithm.

T : Rn → Rm (3.3)

Equation 3.3 implies that there exists some matrix that corresponds to this transforma-
tion. This matrix is denoted by W and represents the weight accrued by each component of
x as it transitions from the layer in Rn to the layer in Rm. Figure 2 gives an example of a
linear transformation in an ML context.

The neural network as we’ve currently defined it is great at predicting one class of func-
tions: linear functions. But not all data we’d like to approximate are linear. This leads to a
natural question: how do we introduce non-linearity into our model? We find the solution in
the other component of a layer in a neural network: the activation function. This function
is run on the vector just before it is passed to the next layer. A common example of an
activation function is the Rectified Linear Unit (ReLU).

g(z) = max(0, z) (3.4)

ReLU has been proven to be very effective when used as an activation function [6] and its
gradient is much simpler to compute than other common activation functions, like sigmoid

3

(Equation 3.5) and hyperbolic tangent (Equation 3.6).

σ(z) =
1

1 + e−z
(3.5)

tanh(z) =
e2z − 1

e2z + 1
(3.6)

Having discussed the key terminology and the construction of machine learning algo-
rithms and deep learning neural networks, we will now proceed to implement a network that
will solve a simple problem.

4 Creating an Artificial Neural Network: xor

In this section, we implement a mathematical model that learns the xor (⊕) function. It
is implemented in the form of an artificial neural network (ANN), specifically as a multi-
layer perceptron (MLP). MLPs are the most basic form of ANNs and are the simplest to
understand. This discussion expounds upon chapter 6.1 of Goodfellow’s Deep Learning [5].
xor is a function defined in boolean algebra1 by the following truth table. The function
returns 1 if and only if one of A,B is 1 while the other is 0.

A B A⊕B
0 0 0
0 1 1
1 0 1
1 1 0

4.1 Näıve (Linear) Solution

4.1.1 Defining the ML Algorithm

First, we need to define our ML algorithm f . We’ll use the D as the dataset.

D =

{
d1 =

[
0
0

]
, d2 =

[
0
1

]
, d3 =

[
1
0

]
, d4 =

[
1
1

]}
We use the function f ∗(x) = x1 ⊕ x2 to define the expected outputs for each test case in

the vector y.

y =


f ∗(d1)
f ∗(d2)
f ∗(d3)
f ∗(d4)

 =


0⊕ 0
0⊕ 1
1⊕ 0
1⊕ 1

 =


0
1
1
0


Additionally, the matrix X will contain the input values for each test case.

1Boolean algebra, discovered by George Boole, forms the basis of computer science. It is the algebra of
the base 2 number system (binary).

4

X =


0 0
0 1
1 0
1 1


Next, we select the mean square error (MSE) function as the cost function J(w, b) for

the model. There are other cost functions that are more commonly used in ML, but MSE
makes the computation more straightforward.

J(w, b) =
1

4

∑
d∈D

(f ∗(d)− f(d,w, b))2 (4.1)

Finally we define the model’s linear form using the function

f(x;w, b) = x⊤w+ b (4.2)

Now that we have a network defined, we teach it using the training data in D.

4.1.2 Training the ANN

Typically, training is done using gradient descent and back-propagation, where the network
structure is updated backwards. The most brute-force way to accomplish this is by using
batch gradient descent, modeled by the equation

w = w− η · ∇J(w) (4.3)

where w is the vector of weights, η is the learning rate, and J(w) is the cost function for
the model [7].

There are ways that this process can be optimized which are out of the scope of this
paper, but the curious reader can read Ruder’s overview of gradient descent optimization
techniques 2.

This is typically how training is done—since minimizing a function with thousands of
inputs directly is computationally heavy—but due to the simplicity of the network we define
(namely, since it has only two input layers and one output layer), we simply minimize the
function J directly, with respect to w and b.

Before we begin this process, it will be helpful to redefine X and w such that the first
entry of w is b. Hence,

X =


1 0 0
1 0 1
1 1 0
1 1 1


and

w =

 b
w1

w2


2Sebastian Ruder. “An overview of gradient descent optimization algorithms”. In: ArXivabs/1609.04747

(2016). url: https://api.semanticscholar.org/CorpusID:17485266.

5

Now, consider the matrix form of the MSE equation. We simplify before we compute the
gradient.

J(w) =
1

4
(y−Xw)⊤(y−Xw)

=
1

4
(y⊤ −X⊤w⊤)(y−Xw)

=
1

4
(y⊤y− yX⊤w⊤ +X⊤w⊤Xw− y⊤Xw)

We simply further by observing that (Xw⊤y) = (y⊤Xw) since the dot product is scalar
and symmetric.

Hence,

J(w) = (y⊤y− 2y⊤Xw+X⊤w⊤Xw) (4.4)

We now use calculus to obtain the minimum of J .

δJ(w)

δw
= ∇J(w) =

1

4
(−2X⊤y+ 2X⊤Xw)

=
1

2
(X⊤Xw−X⊤y)

To find the minimum, set ∇J(w) = 0.

0 =
1

2
(X⊤Xw−X⊤y)

=⇒ 0 = X⊤Xw−X⊤y

=⇒ X⊤y = X⊤Xw

In order to isolate w, multiply both sides by (X⊤X)−1.

(X⊤X)−1X⊤y = (X⊤X)−1X⊤Xw

=⇒ (X⊤X)−1X⊤y = w (4.5)

Now, we calculate some products that we will use when solving for w. Recall

X =


1 0 0
1 0 1
1 1 0
1 1 1


and

y =


0
1
1
0


6

=⇒ X⊤X =

1 1 1 1
0 0 1 1
0 1 0 1



1 0 0
1 0 1
1 1 0
1 1 1

 =

4 2 2
2 2 1
2 1 2

 (4.6)

Notice that the product X⊤X is invertible by the IMT, since det(X⊤X) = 4 ̸= 0.
Furthermore, its inverse is given by

(X⊤X)−1 =

 3
4

−1
2

−1
2

−1
2

1 0
−1

2
0 1

 (4.7)

Finally,

X⊤y =

1 1 1 1
0 0 1 1
0 1 0 1



0
1
1
0

 =

21
1

 (4.8)

Now, to solve for w, we use the results from equations 4.6, 4.7, and 4.8.

w = (X⊤X)−1(X⊤y)

=

 3
4

−1
2

−1
2

−1
2

1 0
−1

2
0 1

21
1


=

1
2

0
0


=⇒ b =

1

2
,w =

[
0
0

]
(4.9)

Our näıve attempt simply outputs 1
2
for all inputs. This is problematic for multiple

reasons. For one, xor is a function in boolean algebra, so we should obtain a binary output.
Additionally, different inputs to xor should produce different outputs. This attempt fails
to solve xor because xor is inherently non-linear (see Figure 3).

4.2 Deep Learning Solution

We solve this problem by transforming the näıve algorithm into a neural network—we add
a hidden layer. This layer allows us to transition to another space where the problem is
represented linearly. Then, a linear model can be used (see Figure 3).

We define our hidden layer as follows.

h = g(W⊤x+ c) (4.10)

where W is the matrix of weights of the linear transformation, c is the vector of biases, and
g(z) is the ReLU (Rectified Linear Unit) function given in 3.4. g(z) is applied element-wise,

7

Figure 3: The solutions to non-linear problems are found in converting them to linear prob-
lems, which linear models can then analyze (figure courtesy of Goodfellow [5]).

so for each element in the resulting vector, g will be evaluated with that element and the
element will be updated as the resulting value. The vector x ∈ R2 in this layer; that is, h
consists of 2 neurons.

The output of this layer is then fed through the same linear model we developed before,
which produces a prediction. The graphical form of this new model is represented in Figure
4. The function representing our entire model is

f(x;W, c,w, b) = σ(w⊤ ·max(0,W⊤x+ c) + b) (4.11)

where x represents the input vector, W is the matrix of weights for the transformation to
the hidden layer, c is the vector of biases for each node in the hidden layer, w is the vector
of weights for the given linear transformation, and b is the bias for the one output node.

Input Layer Hidden Layer Output Layer

R
eL

U
(E

q
.
3.
4)

σ
(E

q
.
3.
5)

∈ R2 ∈ R2 ∈ R

Figure 4: A map of the proposed neural network. Each layer can be thought of as a linear
transformation whose matrix corresponds to the weights between each neuron. The activa-
tion function chosen for each layer is applied to each neuron on that layer after the weights
from the previous layer are applied. Layers can utilize different activation functions.

A process like gradient descent or minimization will lead to the following parameters for
the neural network.

W =

[
1 1
1 1

]
, c =

[
0
−1

]
,w =

[
1
−2

]
, b = 0

8

We substitute these parameters into the network function f .

f(x) = σ(
[
1 −2

]
·max

(
0,

[
1 1
1 1

]
x+

[
0
−1

])
+ 0) (4.12)

Using various values for the input vector x and the network’s trained model f given in

Equation 4.12 we can predict the xor function. Let x =

[
0
1

]
. Then, we have

f

([
0
1

])
= σ

([
1 −2

]
·max

(
0,

[
1 1
1 1

] [
0
1

]
+

[
0
−1

])
+ 0

)
Simplifying the inside of the ReLU function, we gain

f

([
0
1

])
= σ

([
1 −2

]
·max

(
0,

[
1
1

]
+

[
0
−1

])
+ 0

)

= σ

([
1 −2

]
·max

(
0,

[
1
0

])
+ 0

)
Now, ReLU is applied to each element in

[
1
0

]
, which yields the same vector. We proceed

by evaluating the transformation to the output layer, which is just sigmoid applied to the
dot product of w⊤ and the output from ReLU.

f

([
0
1

])
= σ

([
1 −2

] [1
0

]
+ 0

)
= σ

([
1 −2

] [1
0

])
= σ(1)

= 0.7310586

(4.13)

To convert to binary, we round our output, that is,⌊
f

([
1
0

])⌉
= 1

Indeed, 0⊕ 1 = 1, so our network functions as expected!

5 Conclusion

All types of AI and ML dissolve to linear algebra and gradient descent, forming the founda-
tion of systems as simple as the network described above and as sophisticated as state-of-
the-art models. While this network operates on two inputs, most neural networks process
thousands—if not millions—of inputs, enabling applications from image recognition to lan-
guage understanding. For instance, a neural network trained to classify handwritten digits3

can achieve accuracy rates exceeding 99% [8], showcasing the remarkable potential of these

3The curious reader can read the appendix for an example of this network.

9

systems. The ability to estimate minima using gradient descent and backpropagation has
made neural networks indispensable in modern AI. While we continue to push the boundaries
of what these models can achieve, we are reminded that the complexities of their behavior
ultimately stem from the simplicity and elegance of mathematical principles and structures,
primarily those given in linear algebra.

10

Supplementary Appendix: Implementation in Python 3

In the appendix, we discuss the implementation of the neural network we defined to solve the
xor problem (presented in Section 4) both with and without ML libraries. We then discuss
the implementation of the digit classification ANN mentioned in Section 5. THe code is avail-
able in Jupyter notebook file format on GitHub at https://github.com/jacksoneshbaugh/
From-Matrices-to-Models.

A.A: xor Network Implemented with Pure Python

This ANN is based on the discussion in section 4. In this section, you’ll find the code needed
to manually implement the ANN that solves xor , along with annotations and comments
that reference parts of the paper.

Firstly, we setup our imports, and we define the two activation functions we’ll use later,
which are ReLU (Equation 3.4) and sigmoid (Equation 3.5). Notice that we define both to
operate on each entry in a vector or matrix—this is key.

import numpy as np

from numpy import floating

Equation (3.4)

def relu(z) -> np.ndarray:

rn np.maximum(0, z)

The derivative of Equation (3.4)

def relu_derivative(z: np.ndarray) -> np.ndarray:

return (z > 0).astype(float)

Equation (3.5)

def sigmoid(z: np.ndarray) -> np.ndarray:

return 1 / (1 + np.exp(-z))

The derivative of Equation (3.5)

def sigmoid_derivative(z: np.ndarray) -> np.ndarray:

return sigmoid(z) * (1 - sigmoid(z))

Next, we define our:

• input data (X), a matrix;

• expected outputs (y), a vector;

• and our hyperparameters.

The hyperparameters describe the structure of the network (how many neurons in each
layer) and learning algorithm parameters (the learning rate and number of epochs to train
for). Specifically, learning rate is η in Equation 4.3, and training epochs represents how
many times we should run the training algorithm. These numbers both must be tuned on

11

https://github.com/jacksoneshbaugh/From-Matrices-to-Models
https://github.com/jacksoneshbaugh/From-Matrices-to-Models

a network-by-network basis—trial and error is almost guaranteed. Specifically, training too
much can lead to an overfit algorithm (and too little leads to an underfit algorithm) [9].

Setup input/output data for xor

X: np.ndarray = np.array ([[0, 0], [0, 1], [1, 0], [1, 1]])

y: np.ndarray = np.array ([[0] , [1], [1], [0]])

Hyperparameters

input_size: int = 2 # 2 neurons in the input layer

hidden_layer_size: int = 2 # 2 neurons in the hidden layer

output_size: int = 1 # 1 neuron in the output layer

learning_rate: float = 0.1 # eta in equation 4.3

training_epochs: int = 10000 # how many times to run the training

algorithm (fine tune

this number , since the network can

over - or under -fit if

this number is too large or small

--see [9] for more info)

Now, we initialize the weights and biases for the network to random values. np.random.randn(rows,
columns) generates a random ndarray (matrix or vector) of numbers. Then, as described
in Equation 3.3, transitions between layers can be thought of as linear transformations, such
that:

• T1 : R2 → R2 (input layer → hidden layer) has weight matrix W1 and bias vector b1

• T2 : R2 → R (hidden layer → output layer) has weight matrix W2 and bias vector b2

We scale the random numbers—in matrices W1 and W2, we use what is called Xavier
initialization. This scales the weights so that the variance of the activations is the same
across layers, helping to ensure that the network converges to a global minimum during
training [10].

Initialize weights and biases

np.random.seed (38) # for reproducibility

T_1 : input layer -> hidden layer (R^2 -> R^2)

W1: np.ndarray = np.random.randn(input_size , hidden_layer_size) * np

.sqrt (2. / input_size) # Scale the weights

so that the variance of activations is

the same across layers (Xavier Initialization)

b1: np.ndarray = np.random.randn(1, hidden_layer_size) * 0.1

T_2 : hidden layer -> output layer (R^2 -> R)

12

W2: np.ndarray = np.random.randn(hidden_layer_size , output_size) *

np.sqrt (2. / input_size)

b2: np.ndarray = np.random.randn(1, output_size) * 0.1

Next, it’s time to train the network. This is done in a two-step process:

1. We do a forward pass, computing the current network estimation. We calculate the
cost function—in the case of this network, MSE: J(w, b) = 1

4

∑
d∈D(f

∗(d)−f(d,w, b))
(Equation 4.1)

2. We perform batch gradient descent and backpropagation, described by Equation 4.3:
w = w− η · ∇J(w)

Train the network

for epoch in range(training_epochs):

Forward pass

z1: np.ndarray = np.dot(X, W1) + b1 # Evaluate the inside of the

ReLU function

a1: np.ndarray = relu(z1) # Apply ReLU

z2: np.ndarray = np.dot(a1, W2) + b2

a2: np.ndarray = sigmoid(z2)

error: np.ndarray = y - a2

cost: floating = np.mean(error **2)

Backpropagation (Equation 4.3)

d_a2: np.ndarray = error * sigmoid_derivative(a2) #

Estimate gradient at output

d_W2: np.ndarray = np.dot(a1.T, d_a2) #

Get the weight update for W2

d_b2: np.ndarray = np.sum(d_a2 , axis=0, keepdims=True) #

Get the bias update for b2

d_a1: np.ndarray = np.dot(d_a2 , W2.T) * relu_derivative(a1) #

Estimate gradient at hidden layer

d_W1: np.ndarray = np.dot(X.T, d_a1) #

Get the weight update for W1

d_b1: np.ndarray = np.sum(d_a1 , axis=0, keepdims=True) #

Get the bias update for b1

Update the weights and biases

W1 += learning_rate * d_W1

b1 += learning_rate * d_b1

W2 += learning_rate * d_W2

b2 += learning_rate * d_b2

Print the cost occasionally

13

if epoch % 1000 == 0:

print(f’Epoch: {epoch}, Cost: {cost}’)

Our network is trained and good to go! Now, we test it with all the values we trained it
on (Equations 4.12 and 4.13).

Testing the network

print("Predictions after training:")

for i in range(len(X)):

z1: np.ndarray = np.dot(X[i], W1) + b1

a1: np.ndarray = relu(z1)

z2: np.ndarray = np.dot(a1, W2) + b2

a2: np.ndarray = sigmoid(z2)

print(f"Input: {X[i]} -> Predicted Output: {a2.round ()} (Raw: {

a2})")

A.B: xor Network Implemented with tensorflow

This ANN is based on the discussion in section 4. In this section, you’ll find the code needed
to implement the ANN that solves XOR using tensorflow, along with annotations and
comments.

First, we setup our imports.

import numpy as np

import tensorflow as tf

from tensorflow.keras import layers , Sequential

Next, we set up some parameters for the model, and we create the model.

Set random seed for reproducibility

tf.random.set_seed (38)

Set input values and expected output values

X = np.array ([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.float32)

y = np.array ([[0] , [1], [1], [0]], dtype=np.float32)

Define input , hidden , and output layer sizes

input_size = 2

hidden_layer_size = 2

output_size = 1

Now, we add each layer to the model.

Create the model

model = Sequential ([

layers.Input(shape =(2,)), # Input layer (2 features for XOR)

layers.Dense(8, activation=’relu’, kernel_initializer=’he_normal

’), # Hidden layer

layers.Dense(1, activation=’sigmoid ’) # Output layer (sigmoid

for binary classification)

14

])

Finally, we compile the model, training it with the Adam gradient descent algorithm.
We also display the summary once the model is complete.

Compile the model

model.compile(

optimizer=tf.keras.optimizers.Adam(learning_rate =0.001) ,

loss=’binary_crossentropy ’, # Loss function

metrics =[’accuracy ’] # Metrics to monitor

)

train the model

history = model.fit(

X, # Input data

y, # Target data

batch_size =4, # Number of samples per gradient update

epochs =1000, # Number of complete passes through the training

dataset

validation_data =(X, y)

)

Display the model summary

model.summary ()

loss , accuracy = model.evaluate(X, y)

print(f’Loss: {loss}, Accuracy: {accuracy}’)

It’s plain to see that packages like tensorflow make it much simpler to create an ANN.

A.C: Handwritten Digit Classification

Now, we apply the math discussed in this paper to build a handwritten digit classification
ANN using tensorflow. This was alluded to in Section 5. The network is trained to
recognize handwritten digits. Each image of a handwritten digit (grayscale) is converted
into a list of values between 0 and 1—each pixel of the image (an entry) holds its color.

We begin by importing all the libraries we’ll need for this network.

import numpy as np

from tensorflow.keras import layers , models

from tensorflow.keras.datasets import mnist

from tensorflow.keras.utils import to_categorical

import matplotlib.pyplot as plt

Next, we load and reshape the data, and convert the labels to one-hot encoding (there
will be 10 nodes on the output layer, and this tells the network that the most active (value
closest to one) node is the prediction).

Load MNIST dataset

15

(X_train , y_train), (X_test , y_test) = mnist.load_data ()

Preprocess the data

Normalize the images to be between 0 and 1

X_train = X_train.astype(’float32 ’) / 255

X_test = X_test.astype(’float32 ’) / 255

Reshape data to (num_samples , 28, 28, 1) for compatibility with

Conv2D layer (even though we are using Dense layers)

X_train = X_train.reshape(-1, 28, 28, 1)

X_test = X_test.reshape(-1, 28, 28, 1)

Convert labels to one -hot encoding

y_train = to_categorical(y_train , 10) # 10 classes (digits 0-9)

y_test = to_categorical(y_test , 10)

Now, we define the model itself, made up of 5 layers:

• Input Layer: R28×28

• Second Layer (Flatten Layer): T1 : R28×28 → R784 [This layer converts the 2D image
into a 1D vector].

• Third Layer (Dense Layer): T2 : R784 → R128 [This layer narrows down the number of
neurons to move toward an output].

• Fourth Layer (Dropout Layer): T3 : R128 → R128 [This layer sets a fraction of the
inputs to zero and helps to prevent overfitting].

• Fifth Layer (Output Layer) T4 : R128 → R10 [The node with the greatest value is the
network’s prediction (nodes labeled 0–9)].

Define the model

model = models.Sequential ([

layers.Input(shape =(28, 28, 1)),

layers.Flatten(input_shape =(28, 28, 1)), # Flatten the image to

a 1D vector

layers.Dense (128, activation=’relu’, kernel_initializer=’

he_normal ’), # Hidden layer

layers.Dropout (0.2), # Dropout layer to avoid overfitting

layers.Dense (10, activation=’softmax ’) # Output layer for 10

classes

])

Next, we compile, train, and test the model.

Compile the model

model.compile(

optimizer=’adam’, # Adam optimizer

16

loss=’categorical_crossentropy ’, # Loss function for multi -

class classification

metrics =[’accuracy ’] # Monitor accuracy during

training

)

Train the model

history = model.fit(

X_train , # Training data

y_train , # Training labels

epochs =10, # Number of epochs

batch_size =32, # Batch size

validation_split =0.2 # Split off 20% of training data for

validation

)

Evaluate the model on the test set

test_loss , test_acc = model.evaluate(X_test , y_test , verbose =2)

print(f’Test accuracy: {test_acc * 100:.2f}%’)

Make predictions on the test set

predictions = model.predict(X_test)

Show the first test image and its predicted label

plt.imshow(X_test [0]. reshape (28, 28), cmap=’gray’)

plt.title(f"Predicted label: {np.argmax(predictions [0])}")

plt.show()

We have successfully created an artificial neural network that can identify handwritten
digits.

References

[1] Juergen Schmidhuber. “Annotated History of Modern AI and Deep Learning”. In:
ArXiv abs/2212.11279 (2022). url: https://api.semanticscholar.org/CorpusID:
254974067.

[2] Mark Crovella. Computer Graphics: Linear Algebra, Geometry, and Computation.
https : / / www . cs . bu . edu / fac / snyder / cs132 - book / L13ComputerGraphics -

Spring2021.html. Accessed: November 18, 2024. 2021.

[3] Yikun Han, Chunjiang Liu, and Pengfei Wang. A Comprehensive Survey on Vec-
tor Database: Storage and Retrieval Technique, Challenge. 2023. arXiv: 2310.11703
[cs.DB]. url: https://arxiv.org/abs/2310.11703.

[4] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. “Deep Learning”. In: http:
//www.deeplearningbook.org. MIT Press, 2016. Chap. 5.

17

https://api.semanticscholar.org/CorpusID:254974067
https://api.semanticscholar.org/CorpusID:254974067
https://www.cs.bu.edu/fac/snyder/cs132-book/L13ComputerGraphics-Spring2021.html
https://www.cs.bu.edu/fac/snyder/cs132-book/L13ComputerGraphics-Spring2021.html
https://arxiv.org/abs/2310.11703
https://arxiv.org/abs/2310.11703
https://arxiv.org/abs/2310.11703
http://www.deeplearningbook.org
http://www.deeplearningbook.org

[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. “Deep Learning”. In: http:
//www.deeplearningbook.org. MIT Press, 2016. Chap. 6.

[6] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep Sparse Rectifier Neural
Networks”. In: Proceedings of the Fourteenth International Conference on Artificial In-
telligence and Statistics. Ed. by Geoffrey Gordon, David Dunson, and Miroslav Dud́ık.
Vol. 15. Proceedings of Machine Learning Research. Fort Lauderdale, FL, USA: PMLR,
Nov. 2011, pp. 315–323. url: https://proceedings.mlr.press/v15/glorot11a.
html.

[7] Sebastian Ruder. “An overview of gradient descent optimization algorithms”. In: ArXiv
abs/1609.04747 (2016). url: https://api.semanticscholar.org/CorpusID:17485266.

[8] Sanghyeon An et al. “An Ensemble of Simple Convolutional Neural Network Models
for MNIST Digit Recognition”. In: ArXiv abs/2008.10400 (2020). url: https://api.
semanticscholar.org/CorpusID:221266038.

[9] Ismoilov Nusrat and Sung-Bong Jang. “A Comparison of Regularization Techniques
in Deep Neural Networks”. In: Symmetry 10 (2018), p. 648. url: https://api.
semanticscholar.org/CorpusID:56482833.

[10] Justin A. Sirignano and Konstantinos V. Spiliopoulos. “Scaling Limit of Neural Net-
works with the Xavier Initialization and Convergence to a Global Minimum”. In:
ArXiv abs/1907.04108 (2019). url: https://api.semanticscholar.org/CorpusID:
195848363.

18

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://proceedings.mlr.press/v15/glorot11a.html
https://proceedings.mlr.press/v15/glorot11a.html
https://api.semanticscholar.org/CorpusID:17485266
https://api.semanticscholar.org/CorpusID:221266038
https://api.semanticscholar.org/CorpusID:221266038
https://api.semanticscholar.org/CorpusID:56482833
https://api.semanticscholar.org/CorpusID:56482833
https://api.semanticscholar.org/CorpusID:195848363
https://api.semanticscholar.org/CorpusID:195848363

	Introduction
	Linear Algebra and Computer Science: Complimentary Fields
	ML Basics
	Creating an Artificial Neural Network: xor
	Naïve (Linear) Solution
	Defining the ML Algorithm
	Training the ANN

	Deep Learning Solution

	Conclusion

